On the Expected Number of Zeros of a Random Harmonic Polynomial
نویسندگان
چکیده
We study the distribution of complex zeros of Gaussian harmonic polynomials with independent complex coefficients. The expected number of zeros is evaluated by applying a formula of independent interest for the expected absolute value of quadratic forms of Gaussian random variables.
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملOn the Zeros of Random Harmonic Polynomials: the Truncated Model
Inspired by Wilmshurst’s conjecture, W. Li and A. Wei (2009) initiated a probabilistic study concerning the zeros of harmonic polynomials. They derived a Kac-Rice type formula for the expected number of zeros of random harmonic polynomials p(z) + q(z) with independent Gaussian coefficients. They also provided asymptotics in the case when p and q are sampled independently from the the (complex) ...
متن کامل